Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.

نویسندگان

  • Tracy L Hagemann
  • Jolien X Connor
  • Albee Messing
چکیده

Mutations in the gene for the astrocyte specific intermediate filament, glial fibrillary acidic protein (GFAP), cause the rare leukodystrophy Alexander disease (AxD). To study the pathology of this primary astrocyte defect, we have generated knock-in mice with missense mutations homologous to those found in humans. In this report, we show that mice with GFAP-R76H and -R236H mutations develop Rosenthal fibers, the hallmark protein aggregates observed in astrocytes in AxD, in the hippocampus, corpus callosum, olfactory bulbs, subpial, and periventricular regions. Astrocytes in these areas appear reactive and total GFAP expression is elevated. Although general white matter architecture and myelination appear normal, when crossed with an antioxidant response element reporter line, the mutant mice show a distinct pattern of reporter-gene induction that is especially prominent in the corpus callosum, and histochemical staining reveals accumulation of iron in the same region. The mutant mice have a normal lifespan and show no overt behavioral defects, but are more susceptible to kainate-induced seizures. Although these mice demonstrate increased GFAP expression by themselves, further elevation of GFAP via crosses to GFAP transgenic animals leads to a shift in GFAP solubility, an increased stress response, and ultimately death. The mice do not display the full spectrum of pathology observed in human infantile AxD, but may more closely resemble the adult form of the disease. These studies provide formal proof linking GFAP mutations with Rosenthal fibers and oxidative stress, and correlate gliosis and GFAP protein levels to the severity of the disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes

Alexander disease is a fatal neurological illness characterized by white-matter degeneration and formation of Rosenthal fibers, which contain glial fibrillary acidic protein as astrocytic inclusion. Alexander disease is mainly caused by a gene mutation encoding glial fibrillary acidic protein, although the underlying pathomechanism remains unclear. We established induced pluripotent stem cells ...

متن کامل

Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction.

Alexander disease is a fatal neurodegenerative disorder resulting from missense mutations of the intermediate filament protein, GFAP. The pathological hallmark of this disease is the formation of cytoplasmic protein aggregates within astrocytes known as Rosenthal fibers. Transgenic mice engineered to over-express wild-type human GFAP develop an encephalopathy with identical aggregates, suggesti...

متن کامل

Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model.

Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inc...

متن کامل

Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease

Alexander disease is a fatal neurodegenerative disease caused by mutations in the astrocyte intermediate filament glial fibrillary acidic protein (GFAP). The disease is characterized by elevated levels of GFAP and the formation of protein aggregates, known as Rosenthal fibers, within astrocytes. Lithium has previously been shown to decrease protein aggregates by increasing the autophagy pathway...

متن کامل

Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model

BACKGROUND Alexander disease (AxD) is an astrogliopathy that predominantly affects the white matter of the central nervous system (CNS), and is caused by a mutation in the gene encoding the glial fibrillary acidic protein (GFAP), an intermediate filament primarily expressed in astrocytes and ependymal cells. The main pathologic feature of AxD is the presence of Rosenthal fibers (RFs), homogeneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 43  شماره 

صفحات  -

تاریخ انتشار 2006